global_economy
dataset.global_economy
dataset.forecast()
!h
option:# A fable: 789 x 5 [1Y]
# Key: Country, .model [263]
Country .model Year
<fct> <chr> <dbl>
1 Afghanistan trend_model 2018
2 Afghanistan trend_model 2019
3 Afghanistan trend_model 2020
4 Albania trend_model 2018
5 Albania trend_model 2019
6 Albania trend_model 2020
7 Algeria trend_model 2018
8 Algeria trend_model 2019
9 Algeria trend_model 2020
10 American Samoa trend_model 2018
# ℹ 779 more rows
# ℹ 2 more variables: GDP_per_capita <dist>, .mean <dbl>
.mean
column gives the average of the forecast distribution..mean
column gives the average of the forecast distribution.# A tsibble: 218 x 7 [1Q]
Quarter Beer Tobacco Bricks Cement Electricity Gas
<qtr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 1956 Q1 284 5225 189 465 3923 5
2 1956 Q2 213 5178 204 532 4436 6
3 1956 Q3 227 5297 208 561 4806 7
4 1956 Q4 308 5681 197 570 4418 6
5 1957 Q1 262 5577 187 529 4339 5
6 1957 Q2 228 5651 214 604 4811 7
7 1957 Q3 236 5317 227 603 5259 7
8 1957 Q4 320 6152 222 582 4735 6
9 1958 Q1 272 5758 199 554 4608 5
10 1958 Q2 233 5641 229 620 5196 7
# ℹ 208 more rows
filter_index()
to specify a range of the index to filter by:# A tsibble: 140 x 7 [1Q]
Quarter Beer Tobacco Bricks Cement Electricity Gas
<qtr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 1970 Q1 387 6807 386 1049 12328 12
2 1970 Q2 357 7612 428 1134 14493 18
3 1970 Q3 374 7862 434 1229 15664 23
4 1970 Q4 466 7126 417 1188 13781 20
5 1971 Q1 410 7255 385 1058 13299 19
6 1971 Q2 370 8076 433 1209 15230 23
7 1971 Q3 379 8405 453 1199 16667 28
8 1971 Q4 487 7974 436 1253 14484 24
9 1972 Q1 419 6500 399 1070 13838 24
10 1972 Q2 378 7119 461 1282 15919 34
# ℹ 130 more rows
select()
to restrict attention only to Bricks
:model(MEAN())
allows us to implement the mean method easily:model(MEAN())
allows us to implement the mean method easily:model(NAIVE())
:model(NAIVE())
:model(NAIVE())
:model(NAIVE())
:model(SNAIVE())
:# A fable: 40 x 4 [1Q]
# Key: .model [1]
.model Quarter
<chr> <qtr>
1 "SNAIVE(Bricks ~ lag(\"year\"))" 2005 Q1
2 "SNAIVE(Bricks ~ lag(\"year\"))" 2005 Q2
3 "SNAIVE(Bricks ~ lag(\"year\"))" 2005 Q3
4 "SNAIVE(Bricks ~ lag(\"year\"))" 2005 Q4
5 "SNAIVE(Bricks ~ lag(\"year\"))" 2006 Q1
6 "SNAIVE(Bricks ~ lag(\"year\"))" 2006 Q2
7 "SNAIVE(Bricks ~ lag(\"year\"))" 2006 Q3
8 "SNAIVE(Bricks ~ lag(\"year\"))" 2006 Q4
9 "SNAIVE(Bricks ~ lag(\"year\"))" 2007 Q1
10 "SNAIVE(Bricks ~ lag(\"year\"))" 2007 Q2
# ℹ 30 more rows
# ℹ 2 more variables: Bricks <dist>, .mean <dbl>
model(RW())
:# A fable: 40 x 4 [1Q]
# Key: .model [1]
.model Quarter
<chr> <qtr>
1 RW(Bricks ~ drift()) 2005 Q1
2 RW(Bricks ~ drift()) 2005 Q2
3 RW(Bricks ~ drift()) 2005 Q3
4 RW(Bricks ~ drift()) 2005 Q4
5 RW(Bricks ~ drift()) 2006 Q1
6 RW(Bricks ~ drift()) 2006 Q2
7 RW(Bricks ~ drift()) 2006 Q3
8 RW(Bricks ~ drift()) 2006 Q4
9 RW(Bricks ~ drift()) 2007 Q1
10 RW(Bricks ~ drift()) 2007 Q2
# ℹ 30 more rows
# ℹ 2 more variables: Bricks <dist>, .mean <dbl>