\(m\): seasonal period *e.g. ARIMA(1,1,1)(1,1,1)\(_{4}\):
AR(1), MA(1), first differencing, quarterly data
\[ y_{t}' = c + \phi_{1} y_{t-1}' + \Phi_{1} y_{t-4}' + \theta_{1} \epsilon_{t-1} + \Theta_{1} \epsilon_{t-4}' + \epsilon_{t} \]
us_employment from fpp3.Title=="Leisure and Hospitality" and year(Month) > 2000

gg_tsdisplay() with option plot_type = "partial"

fit <- leisure |>
model(
arima012011 = ARIMA(Employed ~ pdq(0,1,2) + PDQ(0,1,1)),
arima210011 = ARIMA(Employed ~ pdq(2,1,0) + PDQ(0,1,1)),
auto = ARIMA(Employed, stepwise = FALSE, approx = FALSE)
)
fit# A mable: 1 x 3
arima012011 arima210011 auto
<model> <model> <model>
1 <ARIMA(0,1,2)(0,1,1)[12]> <ARIMA(2,1,0)(0,1,1)[12]> <ARIMA(2,1,0)(1,1,1)[12]>
ARIMA() options:
stepwise=FALSE: use ``TRUE``` by defaultapprox=FALSE: use this by defaultfit <- leisure |>
model(
arima012011 = ARIMA(Employed ~ pdq(0,1,2) + PDQ(0,1,1)),
arima210011 = ARIMA(Employed ~ pdq(2,1,0) + PDQ(0,1,1)),
auto = ARIMA(Employed, stepwise = FALSE, approx = FALSE)
)
glance(fit)# A tibble: 3 × 8
.model sigma2 log_lik AIC AICc BIC ar_roots ma_roots
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <list> <list>
1 arima012011 0.00146 391. -775. -775. -761. <cpl [0]> <cpl [14]>
2 arima210011 0.00145 392. -776. -776. -763. <cpl [2]> <cpl [12]>
3 auto 0.00142 395. -780. -780. -763. <cpl [14]> <cpl [12]>


PBS datasetATC2=="H02")