\[ y_{t} = c + \epsilon_{t} + \theta_{1} \epsilon_{t-1} + \theta_{2} \epsilon_{t-2} + ... + \theta_{q} \epsilon_{t-q} \]
| Period | \(\epsilon\) |
|---|---|
| 1 | 1.712. |
| 2. | -1.514. |
| 3. | 0.948. |
| 4. | -1.518. |
| 5. | -0.212. |

\[ \begin{align} y_{t} & = \phi_{1} y_{t-1} + \epsilon_{t} \\ & = \phi_{1}(\phi_{1} y_{t-2} + \epsilon_{t-1}) + \epsilon_{t-1} \\ & = \phi_{1}^{2} y_{t-2} + \phi_{1} \epsilon_{t-1}+ \epsilon_{t} \\ & = \phi_{1}^{2}(\phi_{1} y_{t-3} + \epsilon_{t-2}) + \phi_{1} \epsilon_{t-1} + \epsilon_{t} \\ & = \phi_{1}^{3} y_{t-3} + \phi_{1}^{2} \epsilon_{t-2} + \phi_{1} \epsilon_{t-1} + \epsilon_{t} \\ \textrm{etc.} \end{align} \]
\[ y_{t} = \epsilon_{t} + \phi_{1} \epsilon_{t-1} + \phi_{1}^{2} \epsilon_{t-2} + \phi_{1}^{3} \epsilon_{t-3} + ... \]
\[ \begin{align} y_{t}' = & c + \phi y_{t-1}' + ... + \phi_{p} y_{t-p}' \\ & + \theta_{1} \epsilon_{t-1} + ... + \theta_{1} \epsilon_{t-q} + \epsilon_{t} \end{align} \]
global_economy:
ARIMA() to automatically select appropriate values for \(p\), \(d\), and \(q\):Series: Exports
Model: ARIMA(2,0,1) w/ mean
Coefficients:
ar1 ar2 ma1 constant
1.6764 -0.8034 -0.6896 2.5623
s.e. 0.1111 0.0928 0.1492 0.1161
sigma^2 estimated as 8.046: log likelihood=-141.57
AIC=293.13 AICc=294.29 BIC=303.43
