# A tibble: 1 × 4
adj_r_squared CV AIC AICc
<dbl> <dbl> <dbl> <dbl>
1 0.763 0.104 -457. -456.
Use adjusted \(R^{2}\) instead.
\[ \bar{R}^{2} = 1 - (1 - R^{2}) \frac{T - 1}{T - k - 1} \]
\(T\): # of observations
\(k\): # of predictors
\[ AIC = T \times log(\frac{SSE}{T}) + 2(k+2) \]
- $k+2$: number of parameters to be estimated
\[ AIC_{c} = AIC = \frac{2(k+2)(k+3)}{T-k-3} \]
glance() to obtain measures discussed earlier:# A tibble: 1 × 4
adj_r_squared CV AIC AICc
<dbl> <dbl> <dbl> <dbl>
1 0.763 0.104 -457. -456.
\[ y_{t}' = y_{t} - y_{t-1} \]
\[ y_{t} = y_{t-1} + \epsilon_{t} \]


\[ \begin{align} y_{t}'' & = y_{t}' - y_{t-1}' \\ & = (y_{t} - y_{t-1}) - (y_{t-1} - y_{t-2}) \\ & = y_{t} - 2y_{t-1} + y_{t-2} \end{align} \]
\[ y_{t}' = y_{t} - y_{t-m} \]
difference()difference(object, m)