\[ \widehat{y}_{T+h|T} = y_{T} \]
\[ \widehat{y}_{T+h|T} = \frac{\sum_{t=1}^{T}y_{t}}{T} \]
\[ \widehat{y}_{T+1|T} = \alpha y_{T} + \alpha(1-\alpha) y_{T-1} + \alpha(1-\alpha)^{2} y_{T-2} + ... \]
\[ SSE = \sum_{t=1}^{T} (y_{t} - \widehat{y}_{t|t-1})^{2} = \sum_{t=1}^{t} e_{t}^{2} \]

ETS() option in model():
\[ \begin{align} \textrm{Forecast equation. } & \widehat{y}_{t+h|t} = l_{t} + hb_{t} \end{align} \]
\[ \begin{align} \textrm{Level equation. } & l_{t} = \alpha y_{t} + (1-\alpha)(l_{t-1} + b_{t-1}) \end{align} \]
\[ \begin{align} \textrm{Trend equation. } & b_{t} = \beta^{*} (l_{t} - l_{t-1}) + (1-\beta^{*})b_{t-1} \end{align} \]

trend("A") option within model(ETS()).
\[ \widehat{y}_{t+h|t} = l_{t} + (\phi + \phi^{2} + ... + \phi^{h})b_{t} \]
\[ l_{t} = \alpha y_{t} + (1-\alpha)(l_{t-1} + \phi b_{t-1}) \]
\[ b_{t} = \beta^{*}(l_{t}-l_{t-1}) + (1-\beta^{*}) \phi b_{t-1} \]
aus_economy |>
model(
`Holt's method` = ETS(Pop ~ error("A") +
trend("A") + season("N")),
`Damped Holt's method` = ETS(Pop ~ error("A") +
trend("Ad", phi = 0.9) + season("N"))
) |>
forecast(h=15)# A fable: 30 x 5 [1Y]
# Key: Country, .model [2]
Country .model Year
<fct> <chr> <dbl>
1 Australia Holt's method 2018
2 Australia Holt's method 2019
3 Australia Holt's method 2020
4 Australia Holt's method 2021
5 Australia Holt's method 2022
6 Australia Holt's method 2023
7 Australia Holt's method 2024
8 Australia Holt's method 2025
9 Australia Holt's method 2026
10 Australia Holt's method 2027
# ℹ 20 more rows
# ℹ 2 more variables: Pop <dist>, .mean <dbl>
aus_economy |>
model(
`Holt's method` = ETS(Pop ~ error("A") +
trend("A") + season("N")),
`Damped Holt's method` = ETS(Pop ~ error("A") +
trend("Ad", phi = 0.9) + season("N"))
) |>
forecast(h = 15) |>
autoplot(aus_economy, level = NULL) +
labs(title = "Australian population",
y = "Millions") +
guides(colour = guide_legend(title = "Forecast"))

www_usage |>
stretch_tsibble(.init = 10) |>
model(
SES = ETS(value ~ error("A") + trend("N") + season("N")),
Holt = ETS(value ~ error("A") + trend("A") + season("N")),
Damped = ETS(value ~ error("A") + trend("Ad") +
season("N"))
) |>
forecast(h = 1) |>
accuracy(www_usage)# A tibble: 3 × 10
.model .type ME RMSE MAE MPE MAPE MASE RMSSE ACF1
<chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 Damped Test 0.288 3.69 3.00 0.347 2.26 0.663 0.636 0.336
2 Holt Test 0.0610 3.87 3.17 0.244 2.38 0.701 0.668 0.296
3 SES Test 1.46 6.05 4.81 0.904 3.55 1.06 1.04 0.803